周军
姓名:周军 籍贯:四川成都 民族:汉 职称:教授 所在部门(教研室):微分方程教研室 个人主页:https://www.researchgate.net/profile/Jun-Zhou-76 办公室(电话):数学与统计学院809 电子邮件:jzhou@swu.edu.cn
|
|
2000.09-2004.06 西华师范大学数学与信息学院 (本科)
2004.09-2007.06 四川大学数学学院 (硕士)
2008.09-2011.06,重庆大学数学与统计学院(博士)
2007.07-2009.06,西南大学数学与统计学院,助教
2009.07-2011.06,西南大学数学与统计学院, 讲师
2011.07-2016.06,西南大学数学与统计学院, 副教授,硕士研究生导师
2016.07-至今,西南大学数学与统计学院, 教授,博士研究生导师
非线性发展方程与无穷维动力系统
反应扩散方程及斑图动力学
本科:《实变函数》、《泛函分析》、《复变函数与积分变换》
研究生:《Sobolev空间》、《偏微分方程》、《反应扩散方程》、《算子半群》、《无穷维动力系统》、《非线性发展方程》、《Fouier分析及其在偏微分方程中的应用》
[1] 重庆市重庆市数学会理事
[2] 美国数学会评论员
[1] 带有交错扩散的种群模型的平衡态模式,国家自然科学基金青年科学基金。
[2] 非线性抛物方程解的奇异性质,国家自然科学基金数学天元基。
[3] 种群模型中的非线性扩散方程的平衡态模式的定性分析,中国博士后基金面上项目一等资助。
[4] 生物入侵及进化的动力学模型,中国博士后基金特别资助。
[5] 具有趋化性的反应扩散方程的形态生成,重庆市基础科学与前沿技术研究专项项目。
[6] 自催化化学反应的数学模型分析与模拟,重庆市科技局-自然科学基金-面上联合项目。
[1] Well-posedness and dynamic properties of solutions to a class of fourth order parabolic equation with mean curvature nonlinearity, Discrete and Continuous Dynamical Systems - Series B, 2023.
[2] Well-posedness of solutions for a class of quasilinear wave equations with structural damping or strong damping, Chaos Solitons & Fractals, 2022.
[3] Well-posedness of solutions for a class of quasilinear wave equations with strong damping and logarithmic nonlinearity, Studies in Applied Mathematics, 2022.
[4] Well-posedness of solutions for the dissipative Boussinesq equation with logarithmic nonlinearity, Nonlinear Analysis Real World Applications, 2022.
[5] Global attractors of the degenerate fractional Kirchhoff wave equation with structural damping or strong damping, Advances in Nonlinear Analysis, 2022.
[6] Infinite time blow-up of solutions for a class of logarithmic wave equations with arbitrary high initial energy, Applied Mathematics & Optimization, 2021.
[7] Well-posedness of solutions for the sixth-order Boussinesq equation with linear strong damping and nonlinear source, Journal of Nonlinear Science, 2021.
[8] Behavior of solutions to a fourth-order nonlinear parabolic equation with logarithmic nonlinearity, Applied Mathematics & Optimization, 2021.
[9] Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity, Applied Mathematics & Optimization, 2021.
[10] Infinite time blow-up of solutions to a class of wave equations with weak and strong dampingterms and logarithmic nonlinearity, Studies in Applied Mathematics, 2021
[11] Qualitative analysis for a degenerate Kirchhoff-type diffusion equation involving the fractional p-laplacian, Applied Mathematics & Optimization, 2021.
[12] Global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem, Nonlinearity, 2020.
[13] Local existence, global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem, Nonlinearity, 2020.
[14] Global asymptotical behavior of solutions to a class of fourth order parabolic equation modeling epitaxial growth, Nonlinear Analysis Real World Applications, 2019.
[15] L 2 -norm blow-up of solutions to a fourth order parabolic PDE involving the Hessian, Journal of Differential Equations, 2018.
[16] Pattern formation in a general glycolysis reaction-diffusion system, IMA Journal of Applied Mathematics, 2015.
[17] Bifurcation analysis of a diffusive predator–prey model with ratio-dependent Holling type III functional response, Nonlinear Dynamics, 2015.
[18] Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion, Discrete and Continuous Dynamical Systems, 2014.
[19] Positive solutions for a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response, Science China Mathematics, 2014.
[20] Qualitative analysis of an autocatalytic chemical reaction model with decay, Proceedings of the Royal Society of Edinburgh Section A Mathematics, 2014.