当前位置: 首页 > 科学研究 > 学术活动 > 正文
郭少艳副教授、刘永朝教授、孙海琳教授、张慧副研究员学术报告-10月24日
发布时间:2020-10-22 00:00  作者: 本站原创  初审:  复审:  来源:本站原创  浏览次数:

学术报告一

讲座题目:Distributionally Robust Shortfall Risk Optimization Model and Its Approximation

报告人:郭少艳 副教授(大连理工大学)

报告时间:2020年10月24日(星期六)上午8:30—9:20

报告地点:腾讯会议 ( ID: 573 723 178)

摘要: In this talk, we consider a distributionally robust version of the utility-based shortfall risk measure (DRSR) where the true probability distribution is unknown and the worst distribution from an ambiguity set of distributions is used to calculate the shortfall risk measure. We start by showing that the DRSR is a convex risk measure and under some special circumstance a coherent risk measure. We then move on to study an optimization problem with the objective of minimizing the DRSR of a random function and investigate numerical tractability of the optimization problem with the ambiguity set being constructed through φ-divergence ball and Kantorovich ball. In the case when the nominal distribution in the balls is an empirical distribution constructed through independent and identically distributed samples, we quantify convergence of the ambiguity sets to the true probability distribution as the sample size increases under the Kantorovich metric and consequently the optimal values of the corresponding DRSR problems. Specifically, we show that the error of the optimal value is linearly bounded by the error of each of the approximate ambiguity sets and subsequently derive a confidence interval of the optimal value under each of the approximation schemes.

报告人简介: 郭少艳,大连理工大学数学科学学院副教授,先后于2010年和2016年在大连理工大学获得理学学士和理学博士学位。2016--2017年在英国南安普顿大学从事博士后工作,2017年进入大连理工大学工作。主要研究领域为随机优化、分布鲁棒优化和锥约束优化,研究成果发表在Mathematical Programming, SIAM Journal on Optimization,Optimization Methods and Software等国际期刊上。目前主持国家自然科学基金青年基金一项。

学术报告二

讲座题目:Asymptotic Properties of Dual Averaging Algorithm for Constrained Distributed Stochastic Optimization

报告人:刘永朝 教授(大连理工大学)

报告时间:2020年10月24日(星期六)上午9:30—10:20

报告地点:腾讯会议 ( ID: 573 723 178)

摘要:In this talk, we study the asymptotic properties of a distributed algorithm based on dual averaging of gradients. We not only present almost sure convergence and the rate of almost sure convergence, but also asymptotic normality and asymptotic efficiency of the algorithm. Firstly, for general constrained convex optimization problem distributed over a random network, we prove that almost sure consensus can be archived and the estimates of agents converge to the same optimal point. For the case of linear constrained convex optimization, we show that the mirror map of the averaged dual sequence identifies the active constraints of the optimal solution with probability 1, which helps us to prove the almost sure convergence rate and then establish asymptotic normality of the algorithm.

报告人简介:刘永朝,大连理工大学数学科学学院教授、博士生导师。2005年和2008年于大连海事大学数学系获得学士和硕士学位,2011年于大连理工大学数学科学学院获得博士学位, 2014年11月至2016年4月在南安普顿大学从事博士后研究。刘永朝主要研究方向为随机最优化,研究成果主要在Mathematical Programming, SIAM Journal on Optimization,Mathematics of Operations Research,SIAM Journal on Numerical Analysis期刊上发表10余篇。

学术报告三

讲座题目:Convergence Analysis and DC Approximation Method for Data-driven Mathematical Programs with Distributionally Robust Chance Constraints

报告人:孙海琳 教授(南京师范大学)

报告时间:2020年10月24日(星期六)上午10:20—11:10

报告地点:腾讯会议 ( ID: 573 723 178)

摘要:In this paper, we consider the convergence analysis of data-driven mathematical programs with distributionally robust chance constraints (MPDRCC) under weaker conditions without continuity assumption of distributionally robust probability functions. Moreover, combining with the adta-driven approximation, we propose a DC approximation method to MPDRCC without some special tractable structures, and prove the convergence without continuity assumption of distributionally robust probability functions and apply a recent DC algorithm to solve them. The numerical tests verify the theoretical results and show the effectiveness of the DC approximated data-driven approximation method.

报告人简介:孙海琳,南京师范大学数学科学学院教授、博士生导师。2007年毕业于吉林大学获统计学学士,2013年毕业于哈尔滨工业大学,获理学博士学位。在其博士期间,他在英国南安普顿大学和香港理工大学联合培养。2015年12月至2018年1月在香港理工大学应用数学系做博士后研究。他的研究领域包括随机优化、分布鲁棒优化、随机变分不等式及其在投资组合、风险管理和经济模型上的应用,在Math. Program., SIAM J. Optim., Math. Oper. Res.等国际权威期刊发表了十余篇论文,曾获中国运筹学会青年科技奖、江苏省数学会数学成就奖。主持国家自然科学基金面上项目、青年基金项目和江苏省自然科学基金青年基金项目等多项项目。

学术报告四

讲座题目:Kaczmarz meets Bregman: new random iterative algorithms for linear systems with constraints

报告人:张慧 副研究员(国防科技大学)

报告时间:2020年10月24日(星期六)上午11:10—12:00

报告地点:腾讯会议 ( ID: 573 723 178)

摘要:主要介绍约束线性系统的随机迭代算法相关研究进展.

报告人简介:张慧,国防科技大学数学系副研究员、硕士生导师,主要从事数学优化理论与算法研究。主持国家自然科学基金青年、面上项目以及湖南省优秀青年科学基金项目,担任中国运筹学会数学规划分会青年理事、美国数学会旗下评论员以及十余个国内外期刊的审稿人,在MP、MOR、ACHA等期刊上发表论文并得到Stan Osher、Yurii Nesterov、Adrian Lewis、Stephen J. Wright等知名学者的正面引用。