当前位置: 首页 > 科学研究 > 学术活动 > 正文
回国教师学术报告-11月15日
发布时间:2019-11-11 00:00  作者: 本站原创  初审:  复审:  来源:本站原创  浏览次数:

学术报告

报告题目: Bifurcation and pattern formation in diffusive Klausmeier model of water-plant interaction

报 告 人: 王小利 副教授

报告时间:2019年11月15日(星期五)上午10:00-11:00

报告地点: 18楼报告厅

参加人员:教师、研究生、本科生

报告摘要: A reaction-diffusion model describing water and plant interaction proposed by Klausmeier is studied. The existence of non-constant steady state solutions is shown through bifurcation methods, and the existence of large amplitude spatial patterned solutions is shown using associated shadow system. It is rigorously shown that non-homogeneous patterned grassland exists when the rainfall is at a lower level in which homogeneous grassland cannot survive. Even when the rainfall is very low, slow plant diffusion and fast water diffusion can support a vegetation state with vegetation concentrating on a small area. Furthermore, by perturbation method based on implicit function theorem, we prove the existence of non-constant steady states for the original system with large water diffusion rate。