学术报告一
报告题目:Inertial manifolds for the 3D modified-Leray-$\alpha$ model
报告人:孙春友教授(兰州大学)
报告时间:2019年6月6日14:30-15:10
报告地点:25教学楼14楼学术报告厅
报告摘要:Inertial manifold (IM) is a finite-dimensional Lipschitz invariant manifold that contains the global attractor and attracts all the orbits at an exponential rate. From the viewpoint of physical or turbulent, an IM is an interaction law relating small and large eddies in turbulent flow. In this talk, I will talk about our recent results on the existence of an $N$-dimensional IM for the critical modified-Leray-$\alpha$ model in $\mathbb{T}^{3}$. This is a joint work with Dr. Xinhua Li.
报告人简介:孙春友,男,兰州大学教授,博士生导师。1999年在云南大学数学系本科毕业,2005年在兰州大学数学与统计学院获基础数学博士学位。主要从事非线性分析和无穷维动力系统的研究。2011入选新世纪优秀人才支持计划,2015年获国家优秀青年科学基金。
学术报告二
报告题目:On 3D stochastic primitive equations of the large-scale ocean
报告人:黄代文研究员(北京应用物理与计算数学研究所)
报告时间:2019年6月6日15:15-15:55
报告地点:25教学楼14楼学术报告厅
报告摘要:In this talk, we give some results on three-dimensional (3D) stochastic primitive equations of the large-scale ocean. Firstly, we recall the global well-posedness and long-time dynamics for the 3D viscous primitive equations describing the large-scale oceanic motion with white noise. Secondly, we introduce some results on the viscous primitive equations describing the large-scale oceanic motions under fast oscillating random perturbation, such as, the solution to the initial boundary value problem (IBVP) of the 3D stochastic primitive equations converging in distribution to that of IBVP of the limit equation, 3D primitive equations with white noise.
个人简介:黄代文,男,2007年获中国工程物理研究院博士学位,现为北京应用物理与计算数学研究所研究员。主持完成了一项国家基金委青年科学基金;作为主要参加人,完成了一项国家基金重点项目和一项面上项目。在Comm. Math. Phys., J. Func. Anal., J. Diff. Equ.等国际数学期刊上发表论文二十余篇。研究领域:非线性发展方程及其无穷维动力系统,主要研究大气、海洋科学和等离子体物理中的一些重要偏微分方程。
学术报告三
报告题目:Research on Several Problems for the Solutions to Some Nonlinear Evolution Equations
报告人:米永生教授(长江师范学院)
报告时间:2019年6月6日16:00-16:40
报告地点:25教学楼14楼学术报告厅
报告摘要:In this talk, we shall introduce some recent progress on the generalized Camassa-Holm equation (system). First of all, , we consider a higher order shallow water equation, and obtain the local well-posedness of solutions for the Cauchy problem in Sobolev space. Under some assumptions, the existence and uniqueness of the global solutions is establishd. Based some conditions, we also prove the development of singularities in finite time for the solutions and the weak solution for the equation. Secondly, a new model is improved. We also establish the local well-posedness in a range of the Besov spaces and the precise blow-up scenario. Moreover, we prove that peakon solutions to the equation are global weak solutions. Finally, the continuation of solutions to the generalized Camassa-Holm equation beyond wave breaking is considered. A continuous semigroup of global conservative and dissipative solutions are obtained. We show that the solutions are conservative, in the sense that the total energy equals to a constant, for almost every time, while the solutions are dissipative, energy loss occurs through wave breaking.
个人简介:米永生,男,长江师范学院教授。2004年7月毕业于吉林大学获学士学位,2014年7月毕业于重庆大学获理学博士学位,2014年7月至2017年8月在北京应用物理与计算数学研究所从事博士后研究。2009年破格晋升讲师,2012年破格晋升副教授,2014年破格晋升教授,2016年入选重庆市“巴渝学者”特聘教授,2017年入选“重庆市青年拔尖人才特殊支持计划”,2018年获“重庆市十佳科技青年奖”,2015年获“重庆市自然科学二等奖”。近年来,主持国家自然科学基金项目2项(面上、青年),在“Journa of Differential Equations”(5篇)、“Proceedings of the Royal Society of Edinburgh: Section A Mathematics”等国内外SCI期刊发表论文40余篇。
学术报告四
报告题目:Global well-posedness of the 3D incompressible and compressible nematic liquid crystal flows with vacuum
报告人:刘洋博士(南京大学)
报告时间:2019年6月6日16:45-17:25
报告地点:25教学楼14楼学术报告厅
报告摘要: In this talk, I will introduce the global existence of strong solutions for the 3D incompressible and compressible nematic liquid crystal flows with vacuum. In particular, if the fluid is incompressible, we also have established the exponential decay-in-time properties of strong solutions.
个人简介:刘洋,南京大学数学系博士后,2017年博士毕业于大连理工大学。刘洋博士主要从事流体力学中的非线性偏微分方程的研究,其主要研究成果发表在DCDS、ZAMP、JMAA等数学期刊上。现主持中国博士后科学基金面上资助和江苏省博士后基金项目各一项。2017年获得大连理工大学优秀博士论文特别奖学金。