学术报告
报告题目:On the strongly competitive case in a fully parabolic two-species chemotaxis system with Lotka-Volterra competitive kinetics
报告时间:2023年10月11日(星期三)16:00-17:00
报告人:穆春来 教授
报告地点:数学大楼814报告厅
主办单位:数学与统计学院
报告人简介:
穆春来,教授,重庆大学数学与统计学院院长,从事非线性偏微分方程和生物数学研究,教育部新世纪人才、重庆市学术带头人和领军人才;获教育部自然科学奖二等奖、重庆自然科学奖二等奖、国家教学成果二等奖;教育部“非线性分析数学与应用”重点实验室、重庆“分析数学与应用”重点实验室、国家一流专业“数学与应用数学”、国家一流课程“线性代数”、重庆“数学”一级重点学科等负责人。承担国家自科、重庆自科重点等基金,在M3AS、JDE、JNS、JDDE、中国科学等权威期刊发表论文多篇。重庆数学会副理事长,期刊ERA(SCI)和CMAA编委。
报告简介:
This work considers a two-species chemotaxis system with Lotka-Volterra competitive kinetic functional response term in a bounded domain with smooth boundary. We proved global bounded solutions to the system in high dimensions without the convexity of the domain. Moreover, by constructing appropriate Lyapunov functionals, it is proved that the solution convergences to the semitrivial steady state under strong competition if the growth coefficients of two species are appropriately large. Furthermore, the linear stability analysis is performed to find the possible patterning regimes, outside the stability parameters regime, for both semi-trivial and coexistence steady states, our numerical simulations show that non-constant steady states and spatially inhomogeneous temporal periodic patterns are all possible.