当前位置: 首页 > 科学研究 > 学术活动 > 正文
“分形几何及其相关领域学术研讨会”系列报告--5月25日
发布时间:2024-05-20 15:10  作者: 冯妍、肖倩  初审:科研秘书  复审:唐宇  来源:本站原创  浏览次数:


学术报告一


报告题目:Recent progress in Metric Diophantine approximation.

报告人王保伟(华中科技大学)

负责人:冯妍

报告时间:2024年5月25日(星期)9:00-9:40

报告地点:数学楼103报告厅

参加人员:本科生、研究生、教师

报告摘要:This talk is aimed at giving a survey about recent great progresses in Metric Diophantine approximation, including the classical case, on manifolds as well as on fractals.

报告人简介:王保伟,男,教授,博士生导师,华中科技大学数学与统计学院副院长,国家级青年人才。研究方向是分形几何与度量丢番图逼近。先后主持国家自然科学基金青年项目、面上项目。在Adv. Math.、Proc. Lond. Math. Soc.、Math. Ann.等知名数学杂志上发表40余篇学术论文。


学术报告二


报告题目:Some problems on the dynamical systems of times 2 and times 3

报告人李兵(华南理工大学)

负责人:冯妍

报告时间:2024年5月25日(星期)9:40-10:20

报告地点:数学楼103报告厅

参加人员:本科生、研究生、教师

报告摘要: In the talk, we will talk about background of the shrinking target problem for the matrix transformation with real entries on the tori, and give the metric and dimensional results, and further the corresponding restriction on the curves. Some problems on the complexity and Diophantine approximation of dynamical systems of times 2 and times 3 will be discussed.

报告人简介:李兵,男,教授、博士生导师,华南理工大学数学学院副院长,广东省数学会第九届理事会理事。2009年毕业于武汉大学和法国亚眠大学(获两校博士学位),曾在台湾大学和芬兰奥卢大学从事博士后研究。主要研究分形几何及其在动力系统、数论等领域中的应用,在Proc. London Math. Soc.、Adv. Math.、Math. Z. 、Ann. Inst. Henri Poincare Probab. Stat.Ergod Theory Dynam. Systems等国际杂志发表SCI论文40余篇,曾主持面上、青年、天元、国际交流合作等国家自然科学基金、广东省自然科学基金重点项目和自由申请项目等。曾应邀访问Michigan州立大学、Bristol大学、Bremen大学、Helsinki大学、香港中文大学等。2016年入选“广东特支计划” 百千万工程青年拔尖人才。


学术报告三


报告题目:One-sided multifractal analysis of Gibbs measures on the line

报告人麻彩云(香港中文大学)

负责人:冯妍

报告时间:2024年5月25日(星期10:40-11:20

报告地点:数学楼103报告厅

参加人员:本科生、研究生、教师

报告摘要: In this talk, I will discuss the one-sided multifractal analysis of Gibbs measures supported on a self-conformal set on the real line. More precisely, let K be the attractor of a C1+δ iterated function system S=Sii=1m on R satisfying the strong separation condition. Let μψ be a Gibbs measure on K associated with a Hölder continuous potential ψ. As a main result, we obtain the Hausdorff dimension of the one-sided local dimensions of μψ. The talk is based on joint work with De-Jun Feng.

报告人简介:麻彩云, 香港中文大学博士后,主要研究分形几何、自相似集与自仿射集。相关研究在 Advances in Mathematics 等期刊发表。


学术报告四


报告题目:Expansions of generalized Thue-Morse numbers

报告人李耀强广东工业大学

负责人:冯妍

报告时间:2024年5月25日(星期11:20-12:00

报告地点:数学楼103报告厅

参加人员:本科生、研究生、教师

报告摘要:We introduce generalized Thue-Morse numbers of the form

πβθ≔n=1∞θnβn

where β∈1, m+1 with m∈ and θ=θnn≥1∈ 0,1, ⋯, m is a generalized Thue-Morse sequence previously studied by many authors in different terms. This is a natural generalization of the classical Thue-Morse number n=1∞tn2n  where tnn≥0 is the well-known Thue-Morse sequence 01101001. We study when θ would be the unique, greedy, lazy, quasi-greedy and quasi-lazy β-expansions of πβθ, and generalize a result given by Kong and Li in 2015. In particular we deduce that the shifted Thue-Morse sequence tnn≥1 is the unique β-expansion of n=1 ∞tnβn if and only if it is the greedy expansion, if and only if it is the lazy expansion, if and only if it is the quasi-greedy expansion, if and only if it is the quasi-lazy expansion, and if and only if β is no less than the Komornik-Loreti constant.

报告人简介:李耀强,广东工业大学数学与统计学院校聘副教授。2021年博士毕业于法国索邦大学和华南理工大学(获两校博士学位),2021-2023年于中山大学数学学院从事博士后科研工作。研究方向涉及分形几何、动力系统、度量数论、词的组合、谱测度,以第一作者身份在Math. Z., J. Number Theory, Adv. in Appl. Math.等SCI期刊发表论文9篇,主持国家自然科学基金青年科学基金项目和中国博士后科学基金面上项目。


学术报告五


报告题目:Mass Transference Principle: from balls to arbitrary shapes: measure theory

报告人钟文敏 (海军工程大学)

负责人:肖倩

报告时间:2024年5月25日(星期)14:30-15:10

报告地点:数学楼103报告厅

参加人员:本科生、研究生、教师

报告摘要:Let (X, d) be a locally compact metric space. Following a work of Koivusalo and Rams, by a further generalization of the singular value function, we extend the Mass Transference Principle set up by Beresnevich and Velani to limsup sets generated by open sets of arbitrary shapes. 

报告人简介:钟文敏,海军工程大学基础部数学教研室讲师,2021年博士毕业于华中科技大学数学与统计学院,主要从事分形几何与动力系统、丢番图逼近、质量转移原理、形式级数域方面的研究,在Journal of Mathematical Analysis and Applications,Finite Fields and Their Applications, DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS等发表论文多篇


学术报告六


报告题目:Dimensions of projections of typical self-affine sets

报告人谢宇昊 (香港中文大学)

负责人:冯妍

报告时间:2024年5月25日(星期)15:10-15:40

报告地点:数学楼103报告厅

参加人员:本科生、研究生、教师

报告摘要:An important problem in fractal geometry is understanding fractal dimensions of self-affine sets. In 1988, Falconer introduced the concept of affinity dimension, and showed that the Hausdorff and box-counting dimensions of a typical self-affine set (in some sense) are equal to its affinity dimension. In this talk, I will present some results on the dimensions of projections of typical self-affine sets. It is based on joint work with professor De-Jun Feng.

报告人简介:谢宇昊,香港中文大学博士,主要从事分形几何与动力系统的研究。


学术报告七


报告题目:Ramirez's problems and fibers on well approximable set of systems of affine forms

报告人王渤华南理工大学

负责人:肖倩

报告时间:2024年5月25日(星期)15:40-16:10

报告地点:数学楼103报告厅

参加人员:本科生、研究生、教师

报告摘要:We show that badly approximable matrices are exactly those that can not, for any inhomogeneous parameter, be inhomogeneous approximated at every monotone divergent rate, which generalizes Ramırez’s result (2018). We also establish some metrical results of the

fibers on well approximable set of systems of affine forms, which gives answer to two of Ram´ırez’s problems (2018). Furthermore, we prove that badly approximable systems are exactly those that can not, for any monotone convergent rate ψ, be approximated at ψ. Moreover, we study the topological structure of the set of approximation functions.

报告人简介:王渤,华南理工大学博士,主要从事分形几何与动力系统的研究,在Journal of Number Theory等期刊发表过论文。


学术报告八


报告题目:Exponential mixing properties for self-conformal measures

报告人黄俊杰华南理工大学

负责人:肖倩

报告时间:2024年5月25日(星期)16:30-17:00

报告地点:数学楼103报告厅

参加人员:本科生、研究生、教师

报告摘要:Exponential mixing properties play an important role in shrinking target problems, quantitative recurrence problems and other mathematical fields. In this talk, we will discuss exponential mixing properties for self-conformal measures, which is based on a joint work with Prof. Bing Li.

报告人简介:黄俊杰,华南理工大学博士,主要从事分形几何与动力系统的研究。


学术报告九


报告题目:Dynamical Diophantine approximation to Cantor series Expansion Over Formal Laurent Series

报告人:李雪(澳门科技大学)

负责人:肖倩

报告时间:2024年5月25日(星期六)17:00-17:30

报告地点:数学楼103报告厅

参加人员:本科生、研究生、教师

报告摘要:In this report, we study the shrinking targets problem for nonautonomous dynamical systems corresponding to cantor series expansion over formal laurent series. Some results on the Hausdorff dimension of the set for Cantor expansion will be given.

报告人简介:李雪,澳门科技大学博士,主要从事分形几何与动力系统的研究。