学术报告一
报告题目: Phase-separated patterns in complex networks hinder the control of infectious diseases
报告人:靳祯 教授(山西大学复杂系统研究所)
负责人:刘贤宁 教授
报告时间:2024年05月23日(星期四)上午9:00-10:00
报告地点:数学大楼912报告厅
参加人员:教师、研究生、本科生
摘 要:Self-organized infectious disease patterns have important practical significance for understanding the prevalence and distribution of infectious diseases. Currently, the research on the pattern formations of infectious disease in complex network reaction-diffusion systems is mostly limited to the Turing mechanism, and focuses on the simple reproduction or generation of patterns, and lacks a thorough understanding for the functions and significance of patterns. Combining the linear stability analysis and the variational function theory, we analyzed the dynamic behavior of the conservative complex network reaction-diffusion infectious disease system, determined the border of the spinodal region and the binodal region, and studied the phase separation pattern formations of infectious diseases on typical complex spatial networks. Furthermore, we founded that phase separation patterns can hinder the elimination of infectious diseases.
个人简介:靳祯,山西大学二级教授,数学科学学院院长、复杂网络研究所所长。现任山西省数学会理事长,山西省疾病防控数学技术与大数据分析重点实验室主任,享受国务院政府特殊津贴。主要从事生物数学及复杂网络研究工作,先后主持国家自然基金项目8项,其中国家自然科学基金重点项目2 项。作为第一完成人曾获得山西省科学技术奖(自然科学类)一等奖,教育部高等学校优秀成果二等奖奖(自然科学类)。
学术报告二
报告题目: Global dynamics of a stochastic SIRS epidemic model with Beddington-DeAngelis incidence rate
报告人:邱志鹏 教授(南京理工大学数学与统计学院)
负责人:刘贤宁 教授
报告时间:2024年05月23日(星期四)上午10:00-11:00
报告地点:数学大楼912报告厅
参加人员:教师、研究生、本科生
摘 要:In this paper, a stochastic SIRS compartmental model is formulated to investigate the transmission dynamics of infectious diseases. The model incorporates the Beddington-DeAngelis incidence rate and vaccination. For the deterministic model, the basic reproduction number R0 is derived, and the global dynamics is analyzed using the Lyapunov function in terms of R0. The results show that the basic reproduction number completely determines the global dynamics of the deterministic system. For the stochastic model, a new technique is adopted by introducing a Lyapunov exponent λ. Then, the persistence and extinction of infectious diseases are completely determined by λ. If λ <0, then the disease will die out with probability one, while the epidemic becomes strongly stochastically permanent if λ >0. To further substantiate our findings, numerical simulations are conducted to validate and extend the theoretical results.
个人简介:邱志鹏,南京理工大学数学与统计学院教授、博士生导师、江阴校区基础教学与实验中心主任。主要从事常微分方程、动力系统与生物数学的研究工作,正在或完成主持国家自然科学基金4项,国家自然科学基金国际合作基金1项,教育部留学回国基金1项,参加国家自然科学基金面上项目2项和江苏省自然科学基金青年项目1项,目前已在Bull. Math. Biol., Math. Biosci., J. Diff. Equs., SIAM J. Appl. Math., J. Math. Biol., J. Theor. Biol.等期刊上发表论文多篇,曾先后访问过美国Purdue大学、Florida大学,意大利Trento大学、加拿大York大学和Alberta大学。