学术报告
报告题目:Regularity theory of biharmoinc mappings and unsolved problems
报告人:向长林 教授(三峡大学/三峡数学研究中心)
负责人:艾万君 副教授
报告时间:2024年5月31日(星期五)09:30-11:30
报告地点:数学大楼912报告厅
参加人员:教师、研究生、本科生
报告摘要: This talk is to report the regularity theory of biharmonic mappings, including those different approaches developed by several famous mathematicians. In particular, I will discuss the quantitative differentiation approach developed by J. Cheeger, A. Nabor and their collaborators in the recent ten years. This new approach can be efficiently attack the singular set of many geometric mappings and also their flow (such as harmonic mapping flow, mean curvature flow, Ricci flow). As a consequence the global regularity of those geometric objects are obtained.
报告人简介: 向长林,2015年博士毕业于芬兰于韦斯屈莱大学,现为三峡大学/三峡数学研究中心特聘教授。目前主要研究几何型偏微分方程组正则性与奇点集理论及其在几何映照理论中的应用。研究主要成果发表在 Trans. Amer. Math. Soc., J. Math. Pures Appl.,Calc.Var. Partial Differential Equations, Int.Math. Res. Not.,J.Differential Equations, J. Lond. Math. Soc.等国际知名数学期刊上。主持国家自然科学基金青年项目以及面上项目各一项。