当前位置: 首页 > 科学研究 > 学术活动 > 正文
美国内布拉斯加大学林肯分校金瑜副教授的学术报告—6月14日
发布时间:2024-06-05 10:19  作者: 王稳地  初审:科研秘书  复审:唐宇  来源:本站原创  浏览次数:

学术报告


报告题目:Dynamical Studies for Enhancing Population Persistence by Protection Zones

报告人:金瑜 副教授(美国内布拉斯加大学林肯分校数学系)

负责人:王稳地 教授

报告时间:2024年06月14日(星期五)上午10:00-11:00

报告地点:数学大楼912报告厅

参加人员:教师、研究生、本科生

摘要:Many species on the earth are becoming threatened or endangered. Protecting such species has been a critical issue in ecology. Establishing protection zones such as natural reserves has been considered as an effective method to protect an endangered species from extinction, or otherwise to slow down the speed of its extinction.  In this talk, I will discuss how mathematical models are used to investigate the effects of protection zones on population dynamics. In particular, we derive a reaction-diffusion model for a population in a one-dimensional bounded habitat, where the population is subjected to a strong Allee effect in its natural domain but obeys logistic growth in a protection zone. We establish threshold conditions for population persistence and extinction and then analyze the influences of the protection zone on the long-term population dynamics under different boundary conditions. We propose strategies for designing the optimal location of the protection zone in order for the population to persist in the long run.

个人简介:金瑜,在西南师范大学获得硕士学位,在加拿大纽芬兰纪念大学(Memorial University of Newfoundland)获得博士学位,后在加拿大阿尔伯塔大学(University of Alberta)从事博士后工作。现在美国内布拉斯加大学林肯分校(University of Nebraska-Lincoln) 数学系任副教授。主要从事动力系统和数学生态学方面研究工作,包括对生态学现象建立数学模型(主要为常微分方程、偏微分方程、以及积分方程和差分方程)并对模型进行定性定量分析。已在SIAM、JMB、BMB、NA 等杂志发表多篇论文。