学术报告
报告题目:Index and total curvature of minimal surfaces in noncompact symmetric spaces and wild harmonic bundles
报 告 人:李琼玲 特聘研究员, 陈省身数学研究所
负 责 人:艾万君
报告时间:2024年11月22日(星期五)15:30-16:30
报告地点:数学大楼814报告厅
参加人员:教师、研究生、本科生
报告摘要:
We prove two main theorems about equivariant minimal surfaces in arbitrary non-positively curved symmetric spaces extending classical results on minimal surfaces in Euclidean space. First, we show that a complete equivariant branched immersed minimal surface in a non-positively curved symmetric space of finite total curvature must be of finite Morse index. It is a generalization of the theorem by Fischer-Colbrie, Gulliver-Lawson, and Nayatani for complete minimal surfaces in Euclidean space. Secondly, we show that a complete equivariant minimal surface in a non-positively curved symmetric space is of finite total curvature if and only if it arises from a wild harmonic bundle over a compact Riemann surface with finite punctures. Moreover, we deduce the Jorge-Meeks type formula of the total curvature and show it is an integer multiple of $2\pi/N$ for $N$ only depending on the symmetric space. It is a generalization of the theorem by Chern-Osserman for complete minimal surfaces in Euclidean n-space. This is joint work with Takuro Mochizuki (RIMS).
报告人简介:李琼玲博士,南开大学陈省身数学研究所的特聘研究员,拥有美国莱斯大学授予的博士学位。她的学术生涯起步于美国数学科学研究所(MSRI),担任Cha-Chern博士后。此后,李博士在美国加州理工学院和丹麦奥胡斯大学的QGM研究所继续她的博士后研究工作。自2019年起,李博士回到南开大学陈省身数学研究所,致力于数学研究。她的研究兴趣集中在高维Teichmüller理论(Higher Teichmüller theory)、Higgs丛(Higgs bundles)以及调和映射(Harmonic maps)等领域。其相关文章发表在GAFA (Geom. Funct. Anal.)、Proc-LMS (Proc. Lond. Math. Soc.)、JDG (J. Differential Geom.)、Math. Ann.、Adv. Math.、CMP (Comm. Math. Phys.)等国际顶尖期刊上。她曾入选国家海外高层次人才计划青年项目、国家重点研发计划青年科学家项目,并荣获德国洪堡资深学者项目的支持。