报告题目: Hopf algebras, rough paths and regularity structures
报 告 人:高兴 教授(兰州大学)
负 责 人:喻厚义
报告时间:2024年12月6日(星期五)上午9:30-10:30
报告地点:数学楼912
参加人员:教师、研究生、本科生
报告摘要:Rough paths have been introduced by T. Lyons as a new tool for solving rough differential equations. A milestone result of rough paths is that Hairer employed rough path theory to solve the KPZ equation, obtaining the expected solution of physicists. Later Hairer generalized rough paths to regularity structures, with the goal to solve stochastic partial differential equations. Quite recently, Otto gave a diagram-free approach to the stochastic estimates in regularity structures, based on multi-indexes.
In this talk, I will introduce (combinatorial) Hopf algebras towards applications to rough paths and regularity structures. In particular, a Hopf algebraic framework of multi-index rough paths is exposed.
报告人简介:高兴,博士,兰州大学教授、博士生导师、萃英学者、甘肃省陇原人才。于2010年7月在兰州大学数学与统计学院获得博士学位,留校工作至今。在2015年8月至2016年8月间,在美国Rutgers大学交流访问,师从Rota-Baxter代数的国际领军人物郭锂教授。主要从事Rota-Baxter代数和代数组合等领域的研究,发表SCI学术论文六十余篇。主持数学天元基金、青年科学基金、国家自然科学基金面上项目和甘肃省自然科学基金项目, 获甘肃省自然科学奖二等奖,出版教材一本。