报告题目:Cooper-Hirschhorn type identities for three or more squares
报告人:唐大钊(重庆师范大学)
报告时间:2024年12月14日(星期六)10:20-11:00
报告地点:数学楼912报告厅
参加人员:本科生、研究生、教师
报告摘要:Let $r_s(n)$ denote the number of representations of $n$ as a sum of $s$ squares. Hurwitz presented eleven cases in which the generating function of $r_s(an+b)$ is a simple infinite product. In 2004, Cooper and Hirschhorn proved that the generating functions of some infinite families of arithmetic sequences in $r_3(n)$ can be expressed as linear combinations of two given generalized eta-quotients. In this talk, we prove that for any $k\geq0$ and $2\leq t\leq50$, the generating functions $\sum_{n=0}^\infty r_{2t-1}\big(5^{2k+1}n\big)q^n$,
$\sum_{n=0}^\infty r_{2t-1}\big(5^{2k+2}n\big)q^n$ and